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ABSTRACT

Real-time prediction of storm longevity is a critical challenge for National Weather Service (NWS) fore-

casters. These predictions can guide forecasters when they issue warnings and implicitly inform them about

the potential severity of a storm. This paper presents a machine-learning (ML) system that was used for real-

time prediction of storm longevity in the Probabilistic Hazard Information (PHI) tool, making it a Research-

to-Operations (R2O) project. Currently, PHI provides forecasters with real-time storm variables and severity

predictions from the ProbSevere system, but these predictions do not include storm longevity. We specifically

designed our system to be tested in PHI during the 2016 and 2017 Hazardous Weather Testbed (HWT)

experiments, which are a quasi-operational naturalistic environment. We considered three ML methods that

have proven in prior work to be strong predictors for many weather prediction tasks: elastic nets, random

forests, and gradient-boosted regression trees. We present experiments comparing the three ML methods

with different types of input data, discuss trade-offs between forecast quality and requirements for real-time

deployment, and present both subjective (human-based) and objective evaluation of real-time deployment in

the HWT. Results demonstrate that the ML system has lower error than human forecasters, which suggests

that it could be used to guide future storm-based warnings, enabling forecasters to focus on other aspects of

the warning system.

1. Introduction

Accurately predicting storm longevity in real time is a

critical task for National Weather Service (NWS) fore-

casters in a variety of situations.When issuing a warning,

forecasters can use longevity predictions to guide the

spatial and temporal extent of the warning. Likewise,

forecasters in an outbreak situation can use longevity

predictions to help focus their attention on the storms

likely to last longer. Longevity prediction is also an

important task for air travel, as convection closes access

points to the airport, leading to long delays in the system

as planes are delayed or rerouted (MacKeen et al. 1999).

Improved longevity prediction at airports would have

economic benefit for both airlines and customers.

The NWS project called Forecasting a Continuum of

Environmental Threats (FACETs; Rothfusz et al. 2014,

Denotes content that is immediately available upon publica-

tion as open access.
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2018) will change the current watch and warning system

in two ways. First, it will evolve from deterministic to

probabilistic forecasts; second, it will ensure a smooth

transition of forecast information across spatiotemporal

scales. The Probabilistic Hazard Information tool (PHI;

Karstens et al. 2015, 2017, 2018) is a key part of this new

paradigm, focusing on storm-based prediction. The

system we propose was tested in PHI during the Na-

tional Oceanic and Atmospheric Administration

(NOAA) Hazardous Weather Testbed (HWT; Clark

et al. 2012; Gallo et al. 2017), which is a quasi-

operational naturalistic environment.

Thus, the goal of this research is to produce a longevity-

prediction system that improves upon the existing pre-

dictions within PHI, using data and resources available

in real time. This goal changes the approach from a

purely research-based (hindcasting) system to a quasi-

operational system, which adds constraints. For exam-

ple, in an operational or hindcasting system, additional

and higher-quality data would likely be available to

improve the predictions. However, we do not study this

effect, since the goal is to produce a quasi-operational

system.

Most prior research on forecasting storm longevity

consists of modeling studies, though some have been

case studies of individual storms or outbreaks. In all

cases, it has proven to be a challenging task. Within

the modeling domain, it has been demonstrated that

small differences in soundings can produce vastly

different storm longevities. For example, Elmore et al.

(2002) show similar soundings that produce storms

with very different longevities, as well as very dif-

ferent soundings that produce storms with similar

longevities. Brooks (1992) and Lilly (1990) show

differences in longevity with small changes in the

thermal bubble used to initiate the simulations. While

not studying longevity, Dahl (2014) demonstrates

that storm-scale vortices are highly sensitive to small

perturbations in the initial conditions of a numerical

simulation.

Other modeling studies have examined the influences

of different environmental processes on storm longevity.

Thorpe et al. (1982) demonstrate that strong low-level

shear is needed to create long-lived storms. Rotunno

et al. (1988) demonstrate that long-lived squall lines are

dependent on the interaction of low-level shear and the

surface cold pool. Weisman and Klemp (1982, 1986)

demonstrate that wind shear and buoyancy are critical to

both stormmode and longevity.Houston andWilhelmson

(2011) numerically study the issue of storm longevity

in a low-shear environment and demonstrate that a deep

cold pool is crucial for sustaining long-lived storms in

low-shear environments. Parker (2007) shows similar

results in a moderate-shear environment. Shear is one

of the environmental parameters available to our

ML algorithm. Cintineo and Stensrud (2013) examine

the predictability of supercells in simulation, under a

variety of different initial conditions. They do not

specifically examine lifetime except to note that su-

percells have predictable lifetimes of around 90min.

Many other storm features are extremely sensitive to

the initial conditions and cannot be predicted beyond

2 h in advance.

Although fewer in number, there have been some

observational studies of storm longevity. Bunkers et al.

(2002) study long-lived supercells, specifically focusing

on storms that last longer than four hours. They show

that high wind shear and isolation from other convec-

tion are crucial for such long-lived storms. Wilson and

Megenhardt (1997) focus on storms near CapeCanaveral,

Florida, examining the relationship between wind shear

and the convergence zone that often causes Florida

storms.

Another approach to forecasting longevity comes

from algorithms such as the Thunderstorm Identifi-

cation, Tracking, Analysis, and Nowcasting system

(TITAN; Dixon and Wiener 1993; Li et al. 2012;

Wolfson et al. 1994). Both Li et al. (2012) andWolfson

et al. (1994) use machine learning (ML) to automate

part of the tracking and identification process, but nei-

ther uses ML to predict storm longevity.

MacKeen et al. (1999) is most related to our work,

as they use linear regression to predict storm lon-

gevity. Their database consists of 879 storms—some

single cells and some multicell clusters—near Mem-

phis, Tennessee. Specifically, they apply both uni-

variate and multivariate linear regression to radar-

and sounding-derived variables. They demonstrate

that automating the prediction of storm longevity is

difficult, because there is no clear correlation between

storm longevity and any set of radar- or sounding-

derived variables.

This work is unique in several aspects. First, the data

comprise multiple years of observations across the full

continental United States (CONUS). Previous obser-

vational studies have focused on specific storms or

regions of the United States. Second, the predictions

were used in a real-time system: the PHI Experiment

(Karstens et al. 2015, 2017), which was part of the

NOAA HWT, in spring 2016 and 2017. Third, the

predictions are generated by ML. Note that we have

a very preliminary version of this work in McGovern

et al. (2017). This paper represents a significant ex-

tension, in both sophistication of the methods and

subjective and objective analysis of the results. Also,

this paper adds HWT 2017 to the testing data.
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2. Data

Data used for this project fall into two categories.

The first is training data, used to build and objec-

tively evaluate the ML models. The second is human

data, consisting of both subjective and objective

evaluations from the human forecasters in HWT

2016 and 2017.

a. Training data

Because the goal of this project is to create models

that can eventually be transitioned to full-time oper-

ations and evaluate those models in a quasi-operational

naturalistic environment in the HWT, the training

data must be available in real-time. The main source

of training data is ProbSevere Cintineo et al. (2014), a

real-time decision-support system for severe con-

vection. Its main components are automated storm

tracking and ML. Storm tracking is performed with

segmotion (Lakshmanan et al. 2009), an algorithm in

the Warning Decision Support System–Integrated

Information (WDSS-II; Lakshmanan et al. 2007)

software package. The tracking variable used in

ProbSevere is composite reflectivity from the Multi-

Radar Multi-Sensor (MRMS; Smith et al. 2016) sys-

tem, which is updated every ;2min. Storm objects1

are defined as areas $ 20 km2 with composite re-

flectivity $ 35 dBZ.

ProbSevere’s ML is done with a naive-Bayes classi-

fier (NBC), which predicts the probability of severe

weather (windgust$ 25.7ms21 or hail diameter$ 25.4mm

or tornado) for each storm cell. These predictions are not

temporally specific (e.g., a 25% tornado prediction

means the system is 25% confident that the storm will

produce a tornado at some time in the future) and

ProbSevere does not automatically draw warning poly-

gons. Thus, automated guidance on storm longevity

should help the human forecasters in drawing warning

polygons and focusing their attention (e.g., larger poly-

gons and higher priority for longer-lived storms). Prob-

Severe’s ML uses five predictors, including MUCAPE,

bulk shear, and maximum estimated size of hail

(MESH). Our ML uses these and all other variables

listed in Table 1.

We hypothesized that data pertaining to the near-

storm environment (NSE), in addition to the storm

itself, would improve predictions. Thus, we interpo-

late soundings from the Rapid Refresh model (RAP;

Benjamin et al. 2016) to the center of each storm object.

The interpolation method is nearest neighbor in space

and previous neighbor in time (i.e., the entire sound-

ing is taken from one grid cell) and the most recent

RAP analysis (0-h forecast), which preserves physical

consistency among the sounding variables. Then we

compute 97 sounding indices for each storm object,

using the Sounding and Hodograph Analysis and

Research Program in Python (SHARPpy; Blumberg

et al. 2017). The sounding indices include convective

available potential energy (CAPE), convective in-

hibition (CIN), the supercell composite parameter

(SCP), and many others with which forecasters are

familiar. For a detailed description of all 97 indices,

see Table A1 of Lagerquist et al. (2017). We omit the

detailed description here because, due to limited

TABLE 1. Training data for machine learning. All predictors are from ProbSevere. For a discussion of the ProbSevere system

and ‘‘postprocessing,’’ see section 2a. Area, radius, and perimeter are computed from the ProbSevere polygons. AGL 5 above

ground level.

Predictor Units Explanation

Postprocessed in

HWT 2017?

MUCAPE J kg21 Most unstable CAPE. CAPE is computed for parcels lifted

adiabatically from all vertical levels (surface, 1000, 975 hPa,

etc.), and this is the greatest value thereby obtained.

No

0–6-km bulk shear m s21 Magnitude of 6 kmAGLwind vectorminus surface wind vector

MESH mm Maximum estimated size of hail (based on radar reflectivity

inside storm cell)

Storm area m2

Zonal storm radius m

Meridional storm radius m

Storm perimeter m

Current storm longevity s Yes

Zonal storm velocity m s21

Meridional storm velocity m s21

Storm speed (velocity magnitude) m s21

1 One ‘‘storm object’’ is one storm cell at one time step; in other

words, a snapshot of a storm cell.
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computing resources, we cannot use the sounding

indices in real time.

In preliminary work we also investigated the use of

radar-derived variables from the MRMS. Although

there is tremendous value in real-time radar data,

much of the information therein is subsumed by the

ProbSevere variables. Thus, using MRMS data added

little predictive performance, which we determined

not to be worth the additional processing time. If this

were an operational or hindcasting system, not a quasi-

operational one, using all available data would likely

be more important.

Every ML model needs predictors (listed in Table 1)

and truth, which is the actual storm longevity. Since

ProbSevere includes storm tracking, we initially con-

sidered these longevities as true labels. However, it

has been observed in the HWT that segmotion (the

tracking algorithm used by ProbSevere) creates a large

number of storm splits, where it splits what a human

meteorologist would call one storm track (Harrison

2018). This is because segmotion is a real-time algo-

rithm, meaning that it can look only at current and

past data to make tracking decisions. WDSS-II includes

a postevent tracking algorithm, called best track

(Lakshmanan et al. 2015). ‘‘Postevent’’ means that best

track is run in hindcast mode, allowing it to use both past

and future data for tracking decisions, which reduces the

frequency of track splitting. Thus, we use best track to

create true labels of storm longevity.

As expected, best track significantly increases the

storm longevities in our dataset, as shown in Fig. 1 for

spring 2015 and 2016. For example, ;80% of Prob-

Severe storms live less than 60min, which best track

decreases to ;70%. We use best track only to create

labels and not for predictors, which must use real-

time data only. In HWT 2016, storm tracks (and thus,

all predictors listed in Table 1) were taken directly

from ProbSevere. In HWT 2017, storm tracks were

altered by a real-time version of best track (Harrison

2018) leading to the ‘‘postprocessed’’ variables in

Table 1.

We acquired data for every ProbSevere storm from

9 April 2015 to 24 March 2017. To make training more

computationally feasible, we use only storms from

April to June 2015 and 2016. We focus on the spring

season, because (i) the HWT occurs in spring and

(ii) the temporal frequency and spatial coverage of

storm-damage reports are climatologically maximized

in spring (Kelly et al. 1985). Storms are split into train-

ing, validation, and testing (Table 2). The purpose of

training is to optimize the parameters of the ML

model [e.g., the linear-regression coefficients in

Eq. (1)]; the purpose of validation is to find the best

hyperparameters (user-selected values that remain

constant throughout training, such as the number of

trees in a random forest); and the purpose of testing is

to evaluate the chosen model on unseen data, which

provides a reasonable expectation of future perfor-

mance ‘‘in the wild’’ (e.g., in the HWT).

b. NOAA HWT data

Figure 2 shows a screenshot of the PHI tool

(Karstens et al. 2015), which highlights the impor-

tance of longevity predictions to the forecasters.

Longevity is used explicitly to determine the temporal

extent of a warning/advisory and spatial extent of a

warning/advisory polygon. It is also used by a separate

ML algorithm that predicts the probability of severe

weather for each storm cell for the predicted life-

time of the storm Harrison (2018). In the absence of a

prediction algorithm, PHI originally used a constant

longevity prediction (60min remaining), which is re-

placed with our ML system for the tests described in

this paper.

ML predictions were integrated into PHI during

HWT 2016 and 2017 (Karstens et al. 2018; Ling et al.

2017). Each year, the ML system was tested for three

weeks by three NWS forecasters each week. The ML

system used in the PHI experiments was an ensemble

of gradient-boosted regression trees (GBRT), as de-

scribed in section 3, and predictions were capped

at 120min due to logistical considerations. The ML

models were trained on different data for 2016 versus

2017 (since 2017 data were not available in 2016), but

the training procedures (section 3) were the same. Al-

though the ML model results presented in this paper

(RMSE, reliability, etc, shown below) are not the same

as themodels trained forHWT, the differences are small

FIG. 1. Cumulative density function (CDF) of storm longevity for

spring (April–June) 2015 and 2016, according to the ProbSevere

and best track tracking algorithms.
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enough that the analysis of the results would be the

same. Forecasters used the predictions in two settings:

(i) displaced real-time events, where the forecasters re-

ceive psuedo-real-time data for a historical severe-

thunderstorm outbreak, focusing on a single county

warning area (CWA); and (ii) actual real-time events,

occurring in the late afternoon and evening. A listing

of these events and testing periods is provided in

Karstens et al. (2018). In both settings the ProbSevere

data, augmented with the longevity predictions de-

scribed in this paper and other ML products (e.g.,

Lagerquist et al. 2017; McGovern et al. 2018), were

provided to the forecasters as a first guess for issuing

severe thunderstorm warnings or subsevere products

(‘‘advisories’’) at their discretion.

For each storm, forecasters expressed their level of

confidence that severe wind or hail would occur within a

certain time window (e.g., ‘‘0–45min into the future’’).

The default time window was the storm longevity

predicted by the ML system. In this work we objec-

tively evaluate forecasters’ use of the ML longevity

predictions—specifically, whether or not they modified

the predictions, which is possible because their activi-

ties were logged.

3. Methods: Training and evaluation of machine
learning

For the ML methods described in this paper, we

use the implementation in Python’s scikit-learn library

(Pedregosa et al. 2011). We chose three algorithms, based

on prior experience using ML for weather prediction

(e.g., McGovern et al. 2017). First, as a baseline method,

we chose linear regression with elastic-net regularization

(Zou and Hastie 2005). Linear regression produces an

FIG. 2. Screenshot of the PHI tool, showing howpredicted storm longevitymay be used to determine the spatial and temporal extent of a

warning. The solid yellow line in the right panel is a distance buffer around the storm of interest S; the hatched yellow line is a warning

polygon for S, which can be modified by the forecaster. The color fill in the background shows composite (column maximum) radar

reflectivity; the color fill in the foreground shows severe-weather probability for S, and this field can be modified by shrinking, expanding,

or changing the shape of thewarning polygon. The graph in the left panel shows severe-weather probability vs lead time for S, which can be

modified bymany of the elements in the left panel, including the text field marked ‘‘Duration’’. [Figure is fromKarstens et al. (2018), their

Fig. 2b.]

TABLE 2. Training, validation, and testing periods for machine

learning. One ‘‘storm object’’ is one storm cell at one time step.

Dataset Period

No. of storm

cells

No. of storm

objects

Training April–June 2015,

April 2016

729 743 7 088 882

Validation June 2016 120 036 1 388 231

Testing May 2016 104 284 952 726
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equation in the form of Eq. (1), where the xj are pre-

dictors; b0 and bj are adjustable coefficients; and f is the

resulting prediction, to be compared with the true value

y. There are M predictors and N examples:

f 5b
0
1�

M

j51

b
j
x
j
, (1)

loss5
1

N
�
N

i51

1

2
( f

i
2 y

i
)2 1la�
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j51
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j1 l(12a)�

M

j51

1

2
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j .

(2)

Without regularization, the loss function (minimized

by training) is the mean squared error between the

predicted and true values [the first term in Eq. (2)].

Elastic-net regularization is a combination of the lasso

penalty (Tibshirani 1996), which is the second term in

Eq. (2), and the ridge penalty (Hoerl and Kennard

1970, 1988), which is the third term. The variable l 2
[0, ‘) determines the amount of regularization, and

a 2 [0, 1] determines the trade-off between the ridge

and lasso penalties. Both penalties encourage the model

to produce smaller regression coefficients (the bj), and

the lasso penalty specifically encourages the model to

‘‘zero out’’ coefficients, which effectively removes pre-

dictors from the model. Thus, elastic-net regularization

encourages a simpler model, which often generalizes

better to unseen situations and noisy data. In ML termi-

nology, regularization mitigates ‘‘overfitting’’ to the

training data.

The second and third algorithms are decision tree

based. Decision trees are popular in many applications,

because they can identify the most important predictors

and produce human-readable models. Figure 3 shows an

example of a regression tree from one of the trees in our

trained random forest. Because of the size of the full

tree, this is just a small subset chosen for illustration.

It shows the yes and no branches of the tree as well as

the questions identified by the tree growing algorithm.

At each leaf node, a regression tree predicts a constant

value, which is shown in the rectangular nodes.

Decision-tree ensembles, such as random forests and

GBRT, have recently been successful in many meteo-

rological applications (Williams et al. 2008a,b; Gagne

et al. 2009; McGovern et al. 2014; Williams 2014;

McGovern et al. 2015; Clark et al. 2015; Elmore and

Grams 2016). Ensembles usually have smaller bias and

variance (mean squared error) than a single decision

tree. In a random forest (Breiman 2001), each tree is

trainedwith a bootstrap-resampled (Efron 1979) version

of the training set. Thus, on average each tree sees only

63.2% of examples in the training set, which encour-

ages diversity among the trees and improves the per-

formance of the final ensemble. Conversely, in GBRT

FIG. 3. Example of a regression tree. Each ellipse is a question/branch node, used to send

each storm object down the appropriate branch of the tree. Once the storm object reaches a leaf

node, its longevity is predicted based on storm objects in the training set that reached the

same leaf node. Here best_track_current_lifetime is the current storm’s lifetime; mesh is

maximum estimated size of hail (mm); mse is mean squared error (s2); samples is the number of

storm objects in the training set that reached a leaf node; and value is the forecast remaining

longevity (s).
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(Friedman 2002), each tree is trained on the full training

set. However, the kth tree is fit to the residual error from

the first k 2 1 trees, rather than fitting to the true label

(observed longevity) as in random forests. Also, ex-

amples with the largest residuals are weighted the most

heavily (Schapire 2003), which encourages the GBRT

to improve its worst predictions.

We also experiment with bias-correcting predictions

for each model, using isotonic regression (Niculescu-

Mizil and Caruana 2005). Isotonic regression learns

a stepwise function that maps from the base model’s

predictions to calibrated predictions, in a way that

minimizes mean squared error [the first term in Eq. (2)].

The sole input (predictor) for isotonic regression is the

base model’s prediction, and the sole output is the

calibrated prediction. The training set for isotonic re-

gression must be independent of that for the base

model (if the two training sets are the same, isotonic

regression will be trained only on cases for which the

base model performs uncharastically well, so it will

learn to calibrate only uncharacteristically good pre-

dictions). In this work we use the validation data (Table 1)

to train isotonic regression.

When evaluating forecast quality (the performance

of an ML algorithm), we compare to two non-ML

baselines. The first is the constant method (originally

used in PHI), which is to predict a remaining lon-

gevity of 60min for all storms. Although this baseline

is easy to outperform, it is important to establish that

we have improved upon the previously used method.

The second baseline is ‘‘persistence,’’ where the re-

maining longevity of the storm is predicted to equal

its current longevity. This is also known as the Lindy

effect (Goldman 1964). For example, if the storm is

15min old, persistence predicts that it will last an-

other 15min, so its total longevity will be 30min.

Performance is measured in four ways. First, we mea-

sure the root-mean-squared error (RMSE), which isffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1/N)�N

i51(fi 2 yi)
2

q
, withvariablesdefined as in Eq. (2).

Second, we compare the predicted and observed cu-

mulative density functions (CDFs) of storm longevity,

which helps to identify model bias, both in an overall

sense and within certain longevity ranges. Third, we

compare the predicted and observed probability den-

sity functions (PDFs) of storm longevity. For this we use

violin plots2, which synthesize the information shown

in a typical PDF and a typical boxplot. Fourth, we

plot reliability curves, which show the mean observed

longevity (y axis) for each bin of predicted longevity

(x axis). A perfect reliability curve is the line x 5 y,

which means that the conditional expected value is al-

ways the predicted value (given a predicted longevity

of T seconds, themean observation is alwaysT seconds).

The main purpose of the reliability curve is to identify

conditional bias, or bias within certain ranges of the

prediction space.

Our random forests and GBRT ensembles each

contain hundreds of trees, which partly impairs hu-

man readability (although each tree alone is hu-

man readable, reading them all would take many

hours and synthesizing the information thereby

gleaned would be nearly impossible). The permuta-

tion method introduced by Breiman (2001) partly

circumvents this problem, by quantifying the impor-

tance of each predictor. Specifically, for each pre-

dictor xj, the training values are randomly permuted,

yielding the perturbed training setX 0
j . Then an already-

trained model (random forest or GBRT) is used to

generate predictions for X 0
j . The ‘‘importance’’ of

predictor xj is defined as the mean squared error [first

term in Eq. (2)] on the perturbed training setX 0
j , minus

MSE on the original training set. Thus, the most ‘‘im-

portant’’ predictors are those whose random permu-

tation leads to the greatest decrease in performance

(increase in MSE). Predictors can be ranked by impor-

tance, which allows some human insight into the work-

ings of the model.

4. Results

The training of elastic nets requires very little com-

puting time, and they often perform nearly as well

as more sophisticated methods. For these reasons we

use elastic nets in our first experiment, to determine

which predictors are necessary for training. Specifi-

cally, we train elastic nets with and without NSE data

(section 2a), with and without temporal data (where

the predictors in Table 1 are computed for both the

current and previous time steps of the storm), and with

and without bias correction (section 3). This yields eight

models (23 23 2), for which the performance is shown

in Fig. 4. All results in Figs. 4 and 5 are computed on the

testing data, as detailed in Table 2. To create a distri-

bution, such as shown in Figs. 4b and 5b, the RMSE is

computed on each day in the testing set independently.

Bootstrapping with 1000 replicates is used to create

distributions.

Figure 4a shows the CDF’s of observed storm lon-

gevity, predicted longevity from the eight elastic nets,

and predicted longevity from the two baselines. The

eight elastic nets are clustered together so tightly that

they are almost impossible to distinguish. The same is

true in all panels of Fig. 4, where the elastic nets have2 http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.violinplot.
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nearly identical errors but are clearly distinguishable

from the baselines.

Three conclusions can be drawn from Fig. 4. First,

NSE and temporal data yield very little performance

gain. Also, computing NSE and temporal data takes

about four minutes for each ProbSevere update (which

come at intervals of about two minutes and are accom-

panied by MRMS data). This latency time is unaccept-

able, given that (i) many other storm-based predictions

are included in the ProbSevere data, so their latency

time is four minutes less; and (ii) thunderstorms evolve

quickly, so using 4-min-older predictions can be a

serious disadvantage. Thus, we chose the smallest pre-

dictor set (Table 1) for deployment in the HWT. The

lack of improvement with NSE data may be surprising,

but (i) these values have little temporal variance rela-

tive to the radar-derived predictors in ProbSevere that

can change significantly with each two minute update

(ii) some ProbSevere predictors (MUCAPE and bulk

shear) are already based on NWP soundings.

Second, although bias correction has proven impor-

tant in prior experiments with this and other meteoro-

logical data, it did not provide any performance gain for

this problem. Since bias correction adds computing time,

which is cumbersome for real-time deployment, we did

not use it in the HWT or the remaining experiments.

Third, comparing to the two baseline methods (60min

and persistence), Fig. 4 indicates the need for learning.

Elastic nets with all eight parameter settings outperform

the baseline methods, according to all performance

metrics. As shown in Figs. 4a and 4d, persistence has

a strong underforecasting bias, while the constant

method has no resolution at all. As shown in Fig. 4c,

although the baselines have a similar RMSE for some

values of predicted longevity, their RMSE is generally

much higher than the ML models.

FIG. 4. Forecast evaluation for the eight elastic nets and two baselinemethods (60min remaining and persistence). ‘‘BC’’ means that the

elastic net is bias corrected with isotonic regression; ‘‘temporal’’ means that it is trained with temporal data; and ‘‘NSE’’ means that it is

trained with sounding indices, representing the near-storm environment.
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Given the recent success of decision-tree ensembles

in meteorology (section 3), we hypothesized that they

would perform the best of the ML models. Figure 5

compares random forests and GBRT ensembles to

elastic nets. Each model is trained with only the pre-

dictors in Table 1. We used cross validation (not shown)

to choose the number of trees per ensemble and maxi-

mum depth per tree. However, in choosing these values,

we had to consider the computing time needed to run

models in a quasi-operational naturalistic environment.

There may be hundreds of storm cells in the CONUS

at one time, and applying a large model to all storms

could take too long. We empirically decided on 250

trees per ensemble (random forest or GBRT), with a

maximum depth of five branch nodes per tree. Deeper

trees or larger forests could slightly improve predic-

tive power but at a significant computational cost,

limiting their use in real time. Elastic nets used the

default hyperparamters.

As shown in Fig. 5, both types of decision-tree

ensembles improve the predictions, especially for

short-lived storms. They are capable of predicting

longevities of 10–30min, whereas elastic nets rarely

predict less than 30min. Figure 5 shows that, for most

values of predicted longevity, the three ML models

unanimously outperform the baselines and that, while

the three ML models have near-perfect reliability, the

decision-tree ensembles are more reliable at the lower

end of the range (improve on the elastic net’s over-

forecasting bias) and the elastic net is more reliable

at the higher end of the range (improves on the decision

trees’ underforecasting bias). We chose the GBRT for

HWTdeployment, since it (i) predicts short-lived storms

better than the elastic net and (ii) produces smoother

error graphs than the random forest.

Figure 6 shows forecasters’ usage of the predictions

in 2016 and 2017. Most evident is a drastic reduction

in usage frequency (by ‘‘all forecasters’’), from;75% in

FIG. 5. Forecast evaluation for the three ML and two baseline methods (60min remaining and persistence). ‘‘RF’’ means random forest.

Each model was trained without temporal data, NSE data, or isotonic regression.
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2016 to ;40% in 2017. Why did this reduction occur?

Fig. 7 shows, for each year, the distribution of all ML-

predicted longevities, those that were modified by

humans (before modification), and those that were

unmodified. The ML predictions (and observed storm

durations) were generally higher in 2017 than in 2016,

and in both years forecasters preferentially modified

the higher predictions. This action is also evident

when the distributions are split into storms for which

the forecaster issued a warning or advisory (Fig. 7).

Figure 7 shows how the ML predictions were modi-

fied, as well as how the modified and unmodified

distributions compare to observations. In 2017 both

the ML predictions and observations were longer

than in 2016, which seems to justify the longer ML

predictions. In 2016 human modification brings the

FIG. 6. Forecaster usage ofML longevity predictions in HWT (a) 2016 and (b) 2017. The ‘‘1st

Guess ProbSevere Duration Prediction’’ refers to our ML predictions, and the number at the

top of each bar is the total number of ML predictions seen by the forecaster. Note that (a) also

appeared in McGovern et al. (2017).
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median prediction closer to themedian observation, but in

2017 it has the opposite effect, exacerbating the under-

forecasting bias of theML system.However, in both years

the ML system has slightly lower error than the humans.

Despite the large interannual difference between ML

predictions, there is little interannual difference be-

tween the modified predictions. This implies that hu-

man forecasters have a preferred range of longevity

values and prefer not to adjust this range much to ac-

commodate new situations. Similar behavior is shown

in Fig. 8, especially in 2016, where the predictions are

generally adjusted downward for storms with warnings

and upward for storms with advisories, resulting in very

similar postmodification distributions.

Figure 9 (from Harrison and Karstens 2017) shows

the duration distribution for storm-based warnings

(SBW). By comparison with Fig. 7, human-modified

storm longevity has a very similar distribution to se-

vere thunderstorm warnings. Thus, the human fore-

casters’ tendency to more frequently change/reduce

FIG. 7. Distributions of modified and unmodifiedML longevity predictions. The violin plot shows a standard boxplot and PDF of the data

distribution (shaded).
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longevity predictions in 2017 was likely caused in part

by their application of SBW-era training to the HWT

experiment.

5. Discussion

Using the permutation method (section 3), we ex-

amined differences in predictor importance across the

three models (elastic net, random forest, and GBRT).

The models are consistent in their ranking of the most

important variables. All three models choose the cur-

rent storm longevity as the most important variable.

This is not surprising, especially given that the persis-

tence method (which uses only current longevity as

a predictor) performs reasonably (Figs. 4 and 5). The

second-most important variable (again, chosen unani-

mously by all three models) is MESH within the storm.

This also makes sense intuitively, as storms with large

hail tend to have stronger updrafts and to be longer

lived. Shear was identified by many of the studies dis-

cussed in the introduction as the most important pa-

rameter and it shows up indirectly in the most important

variables.

Figure 7 shows that human modification of the ML

predictions slightly increased the error, implying that

forecasters are perhaps better served by using the raw

ML prediction for storm longevity. However, at least

two outstanding questions remain. First, these distribu-

tions are based on a large number of cases, and there

may be certain situations (e.g., storm modes, mesoscale

regimes, or synoptic regimes) where human modification

generally improves the predictions. A more detailed

analysis could reveal these regimes and other aspects of

human-machine interdependence that we have not

considered. Second, the ML predictions for warned

storms (those associated with a warning) were gener-

ally greater than subsevere storms (those associated

with advisories), and forecasters modified the ML

predictions for warned storms more often (Fig. 7). It

makes sense that stronger, more organized storms last

longer, while weaker ones remain more transient. How-

ever, this rationale considers only the temporal dimension

of storm longevity. Uncertainty in the spatial dimension

FIG. 8. Error distributions for modified and unmodified ML longevity predictions. ‘‘Prediction’’ and ‘‘Forecast’’

show storms for which the longevity was modified, before and after modification respectively. ‘‘Observed’’ shows

the observed storm durations for this modified subset of longevity predictions. ‘‘Prediction Error’’ and ‘‘Forecast

Error’’ show the distributions of absolute error resulting from subtracting each prediction and forecast with its

corresponding observed value, respectively.

FIG. 9. Distributions of SBW durations for October 2007–May

2016. ‘‘TOR’’ means tornado warning; ‘‘SVR’’ means severe

thunderstorm warning; and ‘‘All’’ combines both warning types.

The dashed red and yellow lines are the NWS’ maximum recom-

mended duration for TOR and SVR warnings, respectively. From

Harrison and Karstens (2017).
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(i.e., the forecast location of a storm) increases with lead

time, which may be one reason that forecasters com-

pressed longevity predictions into a smaller range with

sound empirical basis from the SBW era, especially for

warning decisions. This insight implies that spatially joining

a warning with an advisory (i.e., warning for shorter lead

times and advising for longer lead times thereafter) may

be a viable way to transition between the current and

FACETs warning paradigms, which bifurcates the plume

into warning duration and storm longevity, respectively.

We have demonstrated that machine learning can be

used for real-time prediction of storm longevity and

provide valuable information to forecasters. As addi-

tional storm data become available in real time, and

as we develop faster and more sophisticated ways to

process said data, the performance of the ML system

should improve. For example, although MRMS data

are available in real time, processing is slow (the grids

are CONUS-wide with 0.018 spacing) and our pro-

cessing methods led to minimal performance gain. We

anticipate that data from high-resolution convection-

allowing models, and new sensing systems such as the

Geostationary Operational Environmental Satellite-R

Series, will allow significant performance gains. Fur-

thermore, since HWT 2016 and 2017, the algorithms

for computing velocity-derived variables (azimuthal

shear and convergence) in MRMS have improved. All

other MRMS variables are reflectivity-derived, so az-

imuthal shear and convergence may contain valuable

new information. Last, we are currently working on a

real-time system for classifying storm mode (e.g., su-

percell, multicell cluster, linear system), which will be

useful to forecasters and may provide a valuable input

to the longevity model.
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